vector 2 dimensi
Pada gambar di atas, tampak bahwa vektor satuan i menunjukkan arah sumbu x positif dan vektor satuan j menunjukkan arah sumbu y positif. Kita dapat menyatakan hubungan antara vektor komponen dan komponenya masing-masing, sebagai berikut :
Fx = Fxi
Fy = Fyj
Kita dapat menulis vektor F dalam komponen-komponennya sebagai berikut :
F = Fxi + Fyj
Misalnya terdapat dua vektor, A dan B pada sistem koordinat xy, di mana kedua vektor ini dinyatakan dalam komponen-komponennya, sebagaimana tampak di bawah :
A = Axi + Ayj
B = Bxi + Byj
Bagaimana jika A dan B dijumlahkan ? …
R = A + B
R = (Axi + Ayj) + (Bxi + Byj)
R = (Ax + Bx)i + (Ay + By)j
R = Rxi + Ryj
Apabila tidak semua vektor berada pada bidang xy maka kita bisa menambahkan vektor satuan k, yang menunjukkan arah sumbu z positif.
A = Axi + Ayj + Azk
B = Bxi + Byj + Bzk
Jika vektor A dan B dijumlahkan maka akan diperoleh hasil sebagai berikut :
R = A + B
R = (Axi + Ayj + Azk) + (Bxi + Byj + Bzk)
R = (Ax + Bx)i + (Ay + By)j + (Az + Bz)k
R = Rxi + Ryj + Rzk
Perkalian titik menggunakan komponen vektor satuan
Kita dapat menghitung perkalian skalar secara langsung jika kita mengetahui komponen x, y dan z dari vektor A dan B (vektor yang diketahui).
Untuk melakukan perkalian titik dengan cara ini, terlebih dahulu kita lakukan perkalian titik dari vektor satuan, setelah itu kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.
Vektor satuaj i, j dan k saling tegak lurus satu sama lain, sehingga memudahkan kita dalam perhitungan. Menggunakan persamaan perkalian skalar yang telah diturunkan di atas (A.B = AB cos teta) kita peroleh :
i . i = j . j = k . k = (1)(1) cos 0 = 1
i . j = i . k = j . k = (1)(1) cos 90o = 0
Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.
A . B = Axi . Bxi + Axi . Byj + Axi . Bzk +
Ayj . Bxi + Ayj . Byj + Ayj . Bzk +
Azk . Bxi + Azk . Byj + Azk . Bzk
A . B = AxBx (i . i) + AxBy (i . j) + Ax Bz (i . k) +
AyBx (j . i) + AyBy (j . j) + AyBz (j . k) +
AzBx (k . i) + AzBy (k . j) + AzBz (k . k)
Karena i . i = j . j = k . k = 1 dan i . j = i . k = j . k = 0, maka :
A . B = AxBx (1) + AxBy (0) + Ax Bz (0) +
AyBx (0) + AyBy (1) + AyBz (0) +
AzBx (0) + AzBy (0) + AzBz (1)
A . B = AxBx (1) + 0 + 0 +
0 + AyBy (1) + 0 +
0 + 0 + AzBz (1)
A . B = AxBx + AyBy + AzBz
Berdasarkan hasil perhitungan ini, bisa disimpulkan bahwa perkalian skalar atau perkalian titik dari dua vektor adalah jumlah dari perkalian komponen-komponennya yang sejenis.
No comments:
Post a Comment